Year 4						
	Concrete	Pictorial				Abstract
Year 4 addition						
Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones).	Use place value equipment to understand the place value of 4-digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between 1,000s and 100s.$2,000+500+40+2=2,542$				Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Solve addition twostep problems in contexts, deciding which operations and methods to use and why.	Use place value and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000s. 1 thousand +2 thousands $=3$ thousands $1,405+2,000=3,405$	Use place calculatio I can add $200+300$ So, 4,256	lue and k 100s me 500 $300=4,55$	wn facts to sup lly.	port mental	Use place value and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \\ & 200+300=500 \end{aligned}$ $4,256+300=4,556$
Add numbers with up to 4 digits using the	Use place value equipment on a place value grid to organise thinking.	Use place	lue equip	nt to model re	required exchanges.	Use a column method to add, including exchanges.

formal written methods of columnar addition where appropriate

Ensure that children understand how the
columns relate to place value and what to do if the numbers are not all 4-digit numbers.

Use equipment.to show 1,905 +775.

Why have only three columns been used for the second row? Why is the Thousands box empty?

Which columns will total 10 or more?

Th	H	T	0
(1)	© (-) 0 ()	-(b) (-)	(1)
():)0	- 0	(-)(-)	

(b)

(

($)$
Include examples that exchange in more than one column.

$$
\begin{array}{r}
4924 \\
+3793 \\
\hline 8717
\end{array}
$$

They can choose to revert to the expanded columnar method at any point if they are experiencing difficulty.

Children should also be able to add numbers with up to 2 decimal places (at this stage, both numbers should have the same number of decimal places):

$$
\begin{array}{r}
39.8 \\
+27.4 \\
\hline 67.2
\end{array}
$$

Children must remember to keep the decimal point in the same place.

They should also be able to use the same method to add up more than two numbers with different numbers of digits:

$$
\begin{array}{r}
4398 \\
+\begin{array}{r}
2751 \\
643 \\
+ \\
\hline 5272
\end{array}+\begin{array}{r}
3777
\end{array} \\
\hline
\end{array}
$$

Year 4 subtraction						
Solve subtraction twostep problems in contexts, deciding which operations and methods to use and why.	Use place value equipment to justify mental methods. What number will be left if we take away 300?	Use place valu appropriate. $7,646-40=7,$	ue grids to su 7,606	upport men $\frac{T}{} Q Q Q Q$	lathods where	Use knowledge of place value and unitising to subtract mentally where appropriate. $3,501-2,000$ 3 thousands -2 thousands $=1$ thousand $3,501-2,000=1,501$

		$\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$ $4 \times 12=40+8$	$\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ 3×7 $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$ Missing number problems can help assess children's knowledge of multiplication and division facts up to 12×12.
			$8 \times 9=\square$ $\square \times 12=84$$\quad$$64 \div \square=8$
Multiply two-digit and three-digit numbers by a one-digit number using formal written layout	Children should focus on deepening their understanding of the grid method to multiply a twodigit number by a one-digit number. Place value apparatus can be used to embed this. Make 4×136 using equipment. I can work out how many $1 \mathrm{~s}, 10$ s and 100 s. There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds ... 4 hundreds $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3 -digit numbers by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$	Use the formal column method for up to 3 -digit numbers multiplied by a single digit.$69 \times 7=483$ 60 9 7 420 63 483 400 50 3 6 2400 300 18 2718 The grid method can be used to multiply a three-digit number as well. $453 \times 6=2718$

			The children should then progress to using the expanded column method, whereby the same process is used, only now the information is recorded in columns. When they are ready, children reduce their recordings even further and start using short multiplication.
Recognise and use factor pairs and commutativity in mental calculations. multiplying together three numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total.	Understand that commutativity can be used to multiply in different orders. $\begin{aligned} & 2 \times 6 \times 10=120 \quad 12 \times 10=120 \quad 10 \times 6 \times 2=120 \\ & 60 \times 2=120 \end{aligned}$ Through practise, they will notice that, no matter how they group the numbers, they will always get the same answer.	Knowing their factor pairs (which two numbers multiply together to make a particular value) is another skill the children need to acquire. Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 5}= \\ & 12 \times 10=120 \end{aligned}$ So, $24 \times 5=120$

Year 4 division			
Recall multiplication and division facts for multiplication tables up to 12×12.	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array. 0000000 $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$
Use place value, known and derived facts to divide.	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	Represent divisions using place value equipment. $9 \div 3=\square$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	Use known facts to divide 10s and 100s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$

Use place value and known facts to divide．	Partition into 10s and 1s to divide where appropriate． $39 \div 3=\text { ? }$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s，10s and 1s using Base 10 equipment to divide where appropriate． $39 \div 3=?$ \square 日 日 $\square \square$ 3 groups of I ten 3 groups of 3 ones $39=30+9$ $\begin{gathered} 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s using a part－whole model to divide where appropriate． $142 \div 2=?$ $100 \div 2=$ \square $40 \div 2=$ \square $6 \div 2=$ \square $100 \div 2=50$ $40 \div 2=20$ $6 \div 2=3$ $\begin{array}{r} 50+20+3=73 \\ 142 \div 2=73 \end{array}$
Use place value and known facts to divide．	Use place value equipment to explore why different partitions are needed． $42 \div 3=?$ I will split it into 30 and 12，so that I can divide by 3 more easily． ㅂㅁ	Represent how to partition flexibly where needed． $84 \div 7=\text { ? }$ I will partition into 70 and 14 because I am dividing by 7. $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required．

Understand remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24 , and 1 that cannot be shared. \square 0 \square \square \square \square	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$ $95 \div 4=23$ remainder 3
Formal written method for division.		becomes... Examples where exchange is required should also be provided: $492 \div 4=$?	Children to use the formal short division method. Manipulatives, such as place value counters, could be used for a more visual experience. Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder.
Year 4 multiplication and division vocabulary	multiplication multiply multiplied by multip division dividing, divide, divided by, divided three each ... ten each group in pairs, three multiplication table multiplication fact, divisior	factor groups of times product once, twice, three time into left, left over, remainder grouping sharing, share, sh tens equal groups of doubling halving array row, colu fact inverse square, squared	ten times repeated addition e equally one each, two each, number patterns

