









\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
 \\
\(24 \div 3=8\) \\
\(24 \div 8=3\) \\
8 and 3 are factors of 24 because they \\
divide 24 exactly.
\(\qquad\) \\
909
\end{tabular} \& 1 and 13 are the only factors of 13.13 is a prime number \& \begin{tabular}{l}
1 and itself without leaving a remainder. \\
I know that 33 is not a prime number as it can be divided by 1 , 3,11 and 33 . \\
I know that 1 is not a prime number, as it has only 1 factor.
\end{tabular} \\
\hline Understanding inverse operations and the link with multiplication, grouping, and sharing \& \begin{tabular}{l}
Use equipment to group and share and to explore the calculations that are present. \\
I have 28 counters. I made 7 groups of 4 . There are 28 in total. I have 28 in total. I shared them equally into 7 groups. \\
There are 4 in each group. I have 28 in total. I made groups of 4 . There are 7 equal groups.
\end{tabular} \& Represent multiplicative relationships and explore the families of division facts. \& \begin{tabular}{l}
Represent the different multiplicative relationships to solve problems requiring inverse operations.
\[
12 \div 3=\square
\]
\[
12 \div \square=3
\]

$$
\times 3=12
$$

$\div 3=12$ \\
Understand missing number problems for division calculations and know how to solve them using inverse operations.

$$
\begin{aligned}
& 22 \div ?=2 \\
& 22 \div 2=? \\
& ? \div 2=22 \\
& ? \div 22=2
\end{aligned}
$$

\end{tabular} \\

\hline Dividing whole numbers by 10, 100 and 1,000 \& Use place value equipment to support unitising for division. 4,000 $\div 1,000$. \& Use a bar model to support dividing by unitising. \& | Understand how and why the digits change on a place value grid when dividing by 10,100 or 1,000 . |
| :--- |
| $3,200 \div 100=$ ? |
| 3,200 is 3 thousands and 2 |
| hundreds. $200 \div 100=23,000 \div$ |
| $100=303,200 \div 100=32$ So, the | \\

\hline
\end{tabular}

|  | 4,000 is 4 thousands. $4 \times 1,000=4,000$ So, $4,000 \div 1,000=4$ |  | digits will move two places to the right. |
| :---: | :---: | :---: | :---: |
| Dividing by multiples of 10,100 and 1,000 | Use place value equipment to represent known facts and unitising. <br> 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=515$ tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$ | Represent related facts with place value equipment when dividing by unitising. <br> 18 tens divided into groups of 3 tens. There <br> 180 is 18 tens. are 6 groups. $180 \div 30=6$ <br> 12 ones divided into groups of 4 . There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$ | Reason from known facts. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$ |
| Dividing up to four digits by a single digit using short division | Explore grouping using place value equipment. $856 \div 4=214$ There are 2 groups of 4 hundreds. There is 1 group of 4 tens. There are 4 groups of 4 ones. | Use place value equipment on a place value grid alongside short division. <br> Lay out the problem as a short division. | Use short division for up to 4-digit numbers divided by a single digit. $\begin{aligned} & 0 \\ & 7 \\ & 7 \begin{array}{\|rrr} 3 & 5 & 5 \\ 3 & q^{4} 2 \\ 3,892 \div 7=556 \end{array} \\ & \end{aligned}$ <br> Use multiplication to check. $556 \times 7=\text { ? }$ $6 \times 7=42$ $50 \times 7=350$ |




